"We are very pleased with the results – using Altair Inspire we could set up a process that helped us to achieve a topologically optimized UAV frame showing even better results than the benchmark. Without Altair and their tools, we would not have been able to leverage the full potential of additive manufacturing in the Aerospace Industry."
– Jacobus Prinsloo
Operations Manager at Aeroswift
First, a basic concept design was created using primitive volumes with as little detail as possible, which was then imported into Altair Inspire to run a baseline finite element analysis. Subsequent optimizations and performance checks ensured that the generated topology facilitated all the required connections between the components of the assembly.
The engineers phased their topology optimization approach by opting to run a first step optimization with increased branch sizes, to reduce the computational complexity in finding primary load paths. This process produced the thickness boundaries which encompassed the optimal design. The Aeroswift team could then recreate the resulting geometry and run a second stage topology optimization with thinner branches. The process showed the transformation from a very basic design to a topology optimized design suitable for metal AM. The project engineers were pleased with the results since all the UAV frame requirements were met, including frame weight, thrust to weight ratio and flight time all while maintaining frame stiffness. The final design showed even better results than initially expected. “We are very pleased with the results – using Altair Inspire we could set up a process that helped us to achieve a topologically optimized UAV frame showing even better results than the benchmark,” said Jacobus Prinsloo, Operations Manager at Aeroswift. “Without Altair and their tools, we would not have been able to leverage the full potential of additive manufacturing in the Aerospace Industry.”